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Abstract. Validation and verification of supervised machine learning
models is becoming increasingly important as their complexity and range
of applications grows. This paper describes an extension to Bayesian
optimization which allows for selecting both training and validation data,
in cases where data can be generated or calculated as a function of a
spatial location.
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1 Introduction

An important problem in supervised machine learning is selecting what data to
use for training. More precisely, there are cases where data has to be manually
collected and labeled, preprocessed or simulated and thus come at a cost of time
and resources. Another important problem is how to evaluate the models once
trained. Both these problems are difficult to solve on their own, as the choice of
training data affects what evaluation data should be used and vice versa.

In some of these cases data can be generated as a function of a spatial loca-
tion. Our contribution is a method for using these functions to generate sets of
training and evaluation data sets. We apply and adapt Bayesian optimization to
jointly select both a training and an evaluation data set.

The selection of a fixed-size training data set is formulated as an optimiza-
tion problem, where the aim is to find a training data set which yields good
overall performance, according to some performance metric, once used as train-
ing data for a supervised machine learning model. The evaluation data set is
chosen iteratively such that the overall uncertainty of the model’s performance
over a spatial region is minimized, resulting in an approximation of the model’s
performance over said region. Finally, the selection of an evaluation data set is
used as a performance metric for when choosing the training data set.

Previous work related to applying Bayesian optimization to supervised ma-
chine learning have focused on using it for hyperparameter optimization.

2 Bayesian optimization

Bayesian optimization is a state of the art black-box optimization method, which
aims to minimize the total number of function evaluations [4]. This makes it suit-



2 David Bergström

able for functions which are expensive to evaluate, e.g. training supervised ma-
chine learning models. A crucial part of the algorithm is the surrogate function,
often a Gaussian process, used to model the function which is being optimized.
A Gaussian process being a highly flexible non-parametric model, useful for re-
gression [3]. The method is summarized in algorithm 1.

Algorithm 1 Bayesian optimization

Input: Objective function f ; iterations N ; input space X; acquisition function α
Output: Best estimate x∗ of the highest function value
1: for i← 1, N do
2: GP ← Gaussian process regression with data 〈xj , yj〉i−1

j=1

3: Select xi ∈ arg maxx∈X α(x,GP)
4: yi ← f(xi)

5: return x∗ ← arg maxxi∈{x1,...,xN} yi

The aim of supervised machine learning is to model the relationship between
a input spaceX and a output space Y , with the intention of predicting the output
when presented with a previously unseen inputs. This is done by analyzing sets
of previously collected data points, each point p ∈ Dtrain ⊆ D ⊂ X × Y .

A data generating function fgen is defined as a function which takes a spatial
position p and generates one or more data points (x, y) ∈ X × Y . One example
of a data generating function is simulators such as CARLA [1], where both color
and semantically segmented images can be generated from a position.

In order to adapt Bayesian optimization to make it suitable for selecting data
for a supervised machine learning model, a few modifications are needed. First,
instead of selecting a single vector xi to evaluate at step 3, we need to select a
fixed-size set of positions, a configuration. Secondly, instead of step 4 we want to
generate data by evaluating the data generating function with the configuration,
train the model on the resulting data and finally evaluate the resulting model.

2.1 Extending Gaussian processes to sets of points

A Gaussian process can be modified to model functions over fixed-size sets by
first concatenating the points into one large vector and then constructing a
kernel which is invariant to the order of elements which corresponds to points
in the original set. A permutation invariant-kernel is constructed as follows, as
described in [2]:

kPI(x, x
′) =

∑
g∈G

∑
g′∈G

k(g(x), g′(x′)), (1)

where G is a set of functions and k is some regular kernel, e.g. the squared
exponential. Each element of G is a function which permutes the vector in one
of the ways in which the kernel should be invariant to.

2.2 Estimating loss

In an ideal scenario the trained model would be evaluated by generating all
possible data pairs and calculating the total loss. However, this is not always
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feasible as generating data can be both costly and time-consuming. Instead the
requirement on the model can be rephrased, using the data generating function
fgen, as having low loss over a closed space. The closed space can be chosen to
describe the use-case of the model, e.g. where the model will be deployed.

Given that a space Ω has been chosen, the total loss in that area is:

L(Ω) =

∫
Ω

[`(f(x,M), y) dp, (x, y)← fgen(p)] dp =

∫
Ω

`(p, f(.,M)) dp, (2)

where ` is a point-wise loss function, e.g. the L2 norm of the squared difference.
The inner loss function `(p, f(.,M)) can be approximated by placing a Gaus-

sian process prior on it. Here Bayesian optimization is used for approximating a
function, rather than optimizing it. This is achieved by using a pure exploration
acquisition function αPE = σ(x), where σ(.) is the predicted standard deviation.
The intent of αPE is to have the algorithm select points with high uncertainty
and thus reduce the overall uncertainty of f , ultimately leading to a good ap-
proximation. The total loss can be estimated by estimating the integral over the
approximated surface. The approximated loss surface can also be used during
run-time, e.g. to provide a certainty measure of the model’s predictions.

3 Preliminary results

The aim of this section is to present some initial results of applying the two
parts of the proposed method. The two parts are applied to simplified problems
with similar properties to selecting data for supervised learning. The simplified
problem consists of placing a set of wireless access points such that the Wi-Fi
signal strength is high in a small simulated 2D building. The loss for a given
configuration of wireless access points is defined as the square of the inverted
signal, i.e. `(p, c) = ((s(p, c) + 1)−2, where s(p, c) is the signal strength for a
configuration c evaluated at point p.

The first experiment uses Bayesian optimization with the permutation in-
variant kernel to place 6 wireless access points, finding the configuration which
results in the lowest total signal strength. The result is shown in figure 1.
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Fig. 1. The loss of the best configuration is shown for each iteration.

The second experiment takes the final configuration from the first experiment
and estimates the loss surface. Bayesian optimization is run for 200 iterations
using the pure exploration acquisition function. The result is shown in figure 2.
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Fig. 2. Estimated loss surface. The left-most figure shows the ground truth loss surface,
where white dots mark where access points have been placed. The middle figure shows
the estimated loss surface and the right-most shows the element-wise absolute error
between the two, both showing blue dots wherever the function have been evaluated.

4 Conclusion

One issue which becomes apparent is that current frameworks for Gaussian pro-
cesses and Bayesian optimization struggle with cases where there are holes in the
domain from which points are chosen. These holes are present whenever there is
a locations where it is not possible to collect data, e.g. the location being inside
a wall or not having any data for that particular area. This issue is present in
both the training data selection and the validation data selection.

In the case of validation data selection, it causes several points to be wasted
since they are placed inside walls, which in turn decreases the quality of the
approximation. Points outside of the valid map are given a loss of 0, which
causes low predicted mean to “leak in” from the walls.

The method assumes that the data generating function gives two similar
output values given two similar input values. This means that it might generalize
to any function with this property. However, this has not been verified.

Future work will focus on using the described method to select data for
training and evaluating deep neural networks as well as look into alternative
optimization methods to avoid placing points inside walls.
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