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Abstract. Traumatic brain injury (TBI) causes temporary or perma-
nent alteration in brain functions. At intensive care units, TBI patients
are usually multimodally monitored, thus rendering large volumes of data
on many physiological variables. For the physician, these data are difficult
to interpret due to their complexity, speed and volume. Thus, computa-
tional aids are recommended, e.g., for predicting patient’s clinical status
in near future. In this article, we describe a probabilistic model that can
be used for aiding physician’s decision making process in TBI patient
care in real time. Our model tries to capture time varying patterns of
patient’s clinical information. The model is built by using a discrimi-
native model learning framework so that it can predict adverse clinical
events with a higher level of accuracy. That is, our model is built so that
prediction of certain desired events are given more attention than that
of the other less important ones. This can be achieved by estimating
model parameters in such a way, for e.g. using a cost function, when a
suitable model structure has been selected, that again can be done dis-
criminatively. However, such estimation procedures have no closed form
solutions, so numerical optimization methods are used.
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1 Introduction

Traumatic brain injury is a type of head injury that causes temporary or per-
manent alteration in brain functions. It is one of the major health problems
currently worldwide. Some of the main causes of TBI are automobile accidents,
falls and sports accidents. TBI is a major cause of mortality and morbidity in
younger people. In Sweden, according to media reports, from 15,000 to 20,000
TBI patients are hospitalized annually, rendering a huge number of hospital days
and a great economic burden. A smaller portion of all TBI patients are emitted
into intensive care units (ICU) due to the severity of their injuries.
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The clinical state of patients suffering severe TBI is often critical. These pa-
tients are multimodally monitored from the time of arrival to the ICU until their
clinical state improves, or in the worst case, until the death occurs. An approx-
imate mean treatment time in the ICU is two weeks. The setup for multimodal
monitoring generally includes an extensive battery of high frequency physiolog-
ical parameters such as intracranial pressure (ICP), arterial pressure (ABP),
cerebral perfusion pressure (CPP), echocardiography (ECG), oxygenation, tem-
perature and respiration. These clinical parameters are utilized to optimize the
treatment of these critically ill patients. However, the information generated
from such multimodal monitoring equipment is too complex and extensive to be
handled by treating ICU physicians and neurosurgeons [2], thus computational
aids are recommended. Currently there are no good means of effective use of
such data for aiding the patient treatment process.

1.1 Aims and Objectives of Our Project

Our project is aimed at effective usage of these large datasets from TBI pa-
tients treated in the ICU. The goal is to offer a real-time tool to aid the patient
treatment processes by generating individualized probabilistic predictions on pa-
tients’ health conditions. In particular, we attempt to use advanced statistical
and artificial intelligence (AI) techniques in our models to attain higher accu-
racies for predicting critical outcomes/events while overall prediction accuracies
are also kept at high levels. Based on the vast amount of data collected in each
single patient, we aim to develop an interactive tool to combine all physiological
parameters and generate predictors of adverse events in a timely fashion as to be
able to act upon them before they occur. Adverse events, associated with worse
clinical outcome, that we set out to detect using an interactive tool are:

1. High ICP or low CPP over long coherent time periods, or in total over whole
monitoring time.

2. Need for a high level of oxygenation (> 50%) during treatment in the ICU

. Need for treatment with a ventricular drainage (vdrain)

4. Pyrexia (core temperature > 38.5°C)

w

As the first step, we are developing simple probabilistic models for prediction
of different clinical conditions of TBI patients in the ICU. Here we describe one
such model including how it can be learnt to predict specific events, such as
e.g. elevated ICP. First we give a brief overview of some of the current models
described in the literature in the area of intracranial pressure monitoring.

1.2 Brief Overview on the Current Methods

Morphological features may provide insight to monitor and to understand ICP
in an automatic fashion. Therefore, a probabilistic framework based on graphical
models is used to track ICP peaks in real time exploiting temporal dependencies
between successive peaks [6]. In a similar fashion, deep learning is used to model
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the relationship between intracranial hypertension and ICP waveform morphol-
ogy to accurately detect presence of hypertension [5]. Furthermore, in one study
computational methods have been developed to uncover causal structures of the
brain physiological measures after subarachnoid hemorrhage [1].

2 A Simple Probabilistic Model

Here we present of simple probabilistic model that is a type of dynamic version
of the so-called naive Bayes model [8]. It can capture several time series in order
to predict one time series into the future. If more than one series is needed, then
multiples of such models can be used. Let X; denote observation at time (discrete
time points) ¢, for ¢t = 1,2, .... and assume that it has no long-term trend. For
simplicity we assume that the values are discrete. Then for p number of such time
series {X1,.4}, ..., {X,,.} where the interest is to predict the X3 441, X1 142, -..., we
use the model
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where k = 1,2,3, ..., integer d; > 0 fori = 1,...,p. Here X; ;.4 _q,) = Xi ¢, s Xit—q;
for ¢+ = 1,...,p. Then the optimal prediction for the time t + k is the poste-
rior mode of conditional distribution of Xi ¢4k given i [s.4—q,], - Tp,[t:6—d,]> 1-€-
T g = argmax,; (T 4y T1 pt—dy]s s Tp [t:6—a,))- Note that d; is moder-
ately large enough to capture motifs for the time series, for each i. However when
they are too large then, so is the conditional probability table p(; [1.¢—q,)|Z1,t4%)
for each 7. Beside this simple model, we plan to implement other artificial intel-
ligence tools such deep neural networks, decision trees, etc. in future.

It is obvious that the above model is just a version of the usual naive Bayes
model, where each feature variable is a time series of its most recent past few
observations, including the class time series. Here the naive Bayes assumption
is that those time series are conditionally independent of each other given the
present value of the class variable. So, it is clear that model structure is fixed
since it is the nave Bayes structure. But it is incomplete until when selection of
time horizon into the past for each time series is done. When deciding the past
time horizon the class time series, one simply need to find the Markov blanket
of present value of the class time series with it. This can be implemented with
general conditional independence tests and related algorithms such as K2 [3].
Similar tasks should be done with all other time series, separately. This is a
simple approach and more complex way is to consider all the time series together.
In addition we are also using the theory of vector autoregressive processes to
build our network models [4].

After past time horizons of all time series have been decided, the parameters
of the model have to be estimated. Common generative learning methods are
maximum likelihood method, where the estimates are just empirical ratios of
counts for respective sets of variables, and the Bayesian method, where the es-
timates are observed and hypothetical counts taken together. In discriminative
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learning methods, since the model is used to predict, say, Xy, accurately given
data on a random variable vector, say, X[, it is argued that, rather than max-
imizing the likelihood for p(x, z},)) (generative model) the condition likelihood
for p(zo | 2[,)) should be maximized for the parameter estimation [7]. However
this has no closed form solution (done only numerically). Sometimes, the data
can be highly imbalance making it necessary to predict certain categories of the
class variable more accurately, especially the minority categories than the ma-
jority categories. Such a case is presented in [8] where parameters are selected
by optimizing a miss-classification cost function defined in such a way that the
cost for an erroneous classification is higher for certain categories than the oth-
ers. This is also a numerical optimization problem, often non-linear. However
one major drawback of such a method is its tendency to over-fit the model to
the training data. Furthermore, such discriminative learning method can result
in model parameters that are not good for doing predictions with partial infor-
mation on the feature variable set, that is one major advantage of probabilistic
models such as Bayesian networks over regression models.
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