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Introduction

The standard approach to deep learning has been first to design the network
architecture manually, then train the network with data. Architecture design
remains an art that requires manual input by machine-learning experts.

A number of methods have been suggested for automating architecture de-
sign. Among the earliest dynamic models, one finds the cascade-correlation ar-
chitecture [3], which adds one hidden neuron at a time while freezing the network
to avoid catastrophic forgetting. Progressive neural networks [6] add new layers
of neurons successively while blocking changes to those parts of the network that
were trained on earlier data, so that previously acquired knowledge is retained.
Other incremental methods exist: e.g., based on incremental training of an auto-
encoder whereby neurons are added either in response to high failure rate with
new data [7] or based on reconstruction error [2]. AdaNet [1] gradually extends
its network based on evaluation and selection among candidate sub-networks. A
dynamically expandable network [4] expands its capacity via network split and
duplication operations, retraining the old network only when necessary.

Despite the advent of such methods, architecture design remains on the whole
a manual exercise based on some predefined heuristics. Moreover, these methods
tend to be computationally inefficient, involving extensive search among alter-
native architectures or repeated training of dense architectures with randomly
initialized parameters. We propose a principled dynamic approach for deep learn-
ing that starts as a blank slate and develops a deep neural network gradually, in
a fully automatic and energy-efficient manner.

Dynamic model LL0

Our dynamic model LL0 for supervised learning uses a neural network that
starts as a blank slate and develops continuously over time. LL0 adds and re-
moves nodes and connections dynamically through four network-modification
mechanisms, each inspired by neuroplasticity [5]: (i) back-propagation that ad-
justs parameters, inspired by synaptic plasticity; (ii) extension that adds new
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nodes, inspired by neurogenesis; (iii) forgetting that removes nodes, inspired
by programmed cell death; and (iv) generalization that abstracts from existing
nodes, inspired by synaptic pruning. In this way, LL0 models four forms of neu-
roplasticity, rather than one (i) as in standard deep learning, or two (i+ii) as in
the dynamic approaches mentioned above.

LL0 receives a continuous stream of data points of the form (x, y), where
x and y are real-number vectors of fixed dimensions and y is the target vector
associated with x. Algorithm 1 shows the main loop.

Algorithm 1: Main loop of LL0.
receive the first data point (x, y)
form |x| input nodes and |y| output nodes
while true do

compute network output ŷ produced by input x
if prediction(ŷ) 6= y then

generalization
extension

else
backpropagation

end
forgetting
receive a new data point (x, y)

end

Results

LL0 has been analyzed with respect to four data sets from different domains,
adapted from playground.tensorflow.org and scikit-learn.org:

spirals : 2,000 two-dimensional data points in the form of two intertwined spi-
rals as shown in Figure 1 (right).

digits : 1,797 labeled 8x8 pixel grayscale images of hand-written digits.
radiology : 569 data points, each a 30-dimensional vector describing features

of a radiology image labeled benign or malignant.
wine : 178 data points, each a 13-dimensional vector describing taste features

of a wine identified by one of three regions of origin.

LL0 was compared to four fully connected, layered networks:

FC0 : No hidden layer.
FC10 : One hidden layer with 10 nodes.
FC2*10 : Two hidden layers with 10+10 nodes.
FC3*10 : Three hidden layers with 10+10+10 nodes.
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All four baseline models were trained using stochastic gradient descent with
individually optimized learning rates for each data set. Despite their simplicity,
these baseline models are highly useful. Dynamic models that construct dense
architectures and randomize initial weights generally learn slower and consume
more energy than hand-crafted networks, because they are required to search
for architectures in addition to undergoing the standard training procedure.

Figure 1 shows the network generated (left) when LL0 ran on the spirals data
set, along with the network’s decision boundaries (right).
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Fig. 1. Left: The network produced by LL0 on the spirals data set, with the two
output nodes and their connections omitted for sake of readability. The architecture
converged after less than one epoch with about 160 nodes, depth six, and max fan-in
five. Right: The spirals data set with the generated decision boundary. Nodes created
through extension are marked by triangles.

Figure 2 shows the result of the five models in terms of accuracy (left) and energy
consumption (right) with respect to the spirals data set.
The outcome on the other three data sets can be summarized as follows, all
because LL0 uses a form of one-shot learning that speeds up that learning while
reducing energy consumption:

– LL0 reached at least the same accuracy as the baselines on all datasets;
– LL0 learned several times faster than all baselines on all datasets;
– LL0 used much less energy than the baselines.

It is important to remember that the four data sets stem from very different
sources: i.e., mathematical functions, handwriting, clinical judgment, and chem-
ical measurements. LL0 used the same hyper-parameter settings on all data sets
and still, for each data set, it performed at the level of the best baseline model
or better.
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Fig. 2. Performance on the spirals data set. Left: LL0 reaches 1.0 accuracy on the
test set after six epochs. The best baseline model FC3*10 has not reached 0.9 accuracy
after 500 epochs. Right: Estimated energy consumption plotted on a logarithmic scale.
Energy consumption was estimated in terms of the number of floating-point operations.
FC3*10 consumes over 1,000 times more energy than LL0 to reach 0.8 accuracy on the
test set.

Conclusion

The LLO model can be used for constructing networks automatically instead
of manually. It starts from a blank slate and develops its deep neural network
continuously. It uses no randomization, builds no fully connected layers, and
engages in no search among candidate architectures: properties that set it apart
from other dynamic models. LL0 compares favorably to all static baseline models
in terms of learning speed, energy efficiency, and versatility.
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